If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6y^2-46y-140=0
a = 6; b = -46; c = -140;
Δ = b2-4ac
Δ = -462-4·6·(-140)
Δ = 5476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5476}=74$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-46)-74}{2*6}=\frac{-28}{12} =-2+1/3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-46)+74}{2*6}=\frac{120}{12} =10 $
| (3x+7)–6=12x–(x+4)–(4x–5) | | 8.6x+4.4x-11=35 | | 88=4=7x | | 4x–5=7x+5 | | 10b+10=20 | | (5x+16)+(9x-4)=180 | | 15w+3=3 | | 3x+26=5x-34 | | c/14+2=6 | | -0,5x+5=x-1 | | -1/2x+5=x-1 | | 35=7t–8(t–5) | | 4x+1=3(x+2 | | 2z^2+7z+3=0 | | -1=p/4-2 | | 10.2/x=0.6 | | q+1/3=7 | | -8n-9=135 | | 75x+4=150+x | | (0.7n-0.12)/0.2+0.8=3 | | -2y-5y=21 | | 5n+50=10 | | 7(x-5)=9x+1 | | x+5.2=-8.9 | | 9/4(y)-12=1/4(y)-4 | | (0.4n+0.3)/0.5-0.2=2 | | 8x-6+2x-4+x-8=180 | | -14=9c-5 | | 246-6y=0 | | t/0.4=82.60 | | (0.3n-0.04)/0.8=0.4 | | X+.06x=1992 |